Files
livedash-node/.opencode/skills/vercel-react-best-practices/rules/server-cache-lru.md
Kaj Kowalski cd05fc8648 fix: resolve Prettier markdown code block parsing errors
- Fix syntax errors in skills markdown files (.github/skills, .opencode/skills)
- Change typescript to tsx for code blocks with JSX
- Replace ellipsis (...) in array examples with valid syntax
- Separate CSS from TypeScript into distinct code blocks
- Convert JavaScript object examples to valid JSON in docs
- Fix enum definitions with proper comma separation
2026-01-20 21:09:29 +01:00

42 lines
1.3 KiB
Markdown

---
title: Cross-Request LRU Caching
impact: HIGH
impactDescription: caches across requests
tags: server, cache, lru, cross-request
---
## Cross-Request LRU Caching
`React.cache()` only works within one request. For data shared across sequential requests (user clicks button A then button B), use an LRU cache.
**Implementation:**
```typescript
import { LRUCache } from "lru-cache";
const cache = new LRUCache<string, any>({
max: 1000,
ttl: 5 * 60 * 1000, // 5 minutes
});
export async function getUser(id: string) {
const cached = cache.get(id);
if (cached) return cached;
const user = await db.user.findUnique({ where: { id } });
cache.set(id, user);
return user;
}
// Request 1: DB query, result cached
// Request 2: cache hit, no DB query
```
Use when sequential user actions hit multiple endpoints needing the same data within seconds.
**With Vercel's [Fluid Compute](https://vercel.com/docs/fluid-compute):** LRU caching is especially effective because multiple concurrent requests can share the same function instance and cache. This means the cache persists across requests without needing external storage like Redis.
**In traditional serverless:** Each invocation runs in isolation, so consider Redis for cross-process caching.
Reference: [https://github.com/isaacs/node-lru-cache](https://github.com/isaacs/node-lru-cache)